烯醇化酶-α和C-MYC启动子结合蛋白-1基于PI3K/Akt通路调控肝细胞癌发生发展的研究进展
徐伟鑫 王春芳 罗艳红
右江民族医学院医学检验学院,广西百色 533000
Research progress of enolase -α and C-MYC promoter binding protein-1 regulating the occurrence and progression of hepatocellular carcinoma based on PI3K/Akt pathway
XU Weixin WANG Chunfang LUO Yanhong
School of Laboratory Medicine, Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise 533000, China
摘要 烯醇化酶-α(ENO1)是一种具有组织特异性表达的糖酵解关键酶,其参与糖酵解并影响此进程,C-MYC启动子结合蛋白-1(MBP-1)可抑制癌基因C-MYC的表达。目前发现,两者由同一基因编码表达,并且其表达调控与PI3K/Akt通路有着复杂的关系。ENO1和MBP-1可通过调控PI3K/Akt通路,在肝细胞癌(HCC)等肿瘤的进展和抑制中发挥重要作用。本文就ENO1和MBP-1的功能、表达调控、与PI3K/Akt通路的关系及基于该通路对HCC等癌症的作用机制进行简要综述,从而为HCC发生和进展的可能分子机制和可用于调控该机制的分子靶点提供一定的理论依据,并且为未来对于HCC的有效治疗提供新思路。
关键词 :
烯醇化酶-&alpha ,
C-MYC启动子结合蛋白-1 ,
PI3K/Akt通路 ,
肝细胞癌
Abstract :Enolase-α (ENO1) is a type of key glycolysis enzyme with tissue-specific expression, which participates in glycolysis and affects the process of glycolysis. C-MYC promoter binding protein-1 (MBP-1) can inhibit the expression of oncogene C-MYC. At present, it has been found that they are expressed by the same genetic encode, and there is a complex relationship between their expression regulation and the PI3K/Akt pathway. ENO1 and MBP-1 play an important role in the progression and inhibition of tumors such as hepatocellular carcinoma (HCC) by regulating the PI3K/Akt pathway. This paper briefly reviewes the function of ENO1 and MBP-1, their expression regulation, and their relationship with PI3K/Akt signal pathway as well as the mechanism of this pathway on HCC. Thus we can explore possible molecular mechanism for the occurrence and progression of HCC so as to provide a theoretical basis for molecular targets to regulate this mechanism. It aims to provide new ideas for the effective treatment of HCC in the future.
Key words :
Enolase-α
C-MYC promoter binding protein-1
PI3K/Akt pathway
Hepatocellular carcinoma
基金资助: 国家自然科学基金资助项目(81960303);
右江民族医学院校级科研课题(yy2021sk012)。
通讯作者:
罗艳红(1965-),女,硕士,教授,硕士生导师;研究方向:中草药抗肝癌。
作者简介 : 徐伟鑫(1982-),男,右江民族医学院基础医学院2020级免疫学专业在读硕士研究生;研究方向:肝癌机制。
引用本文:
徐伟鑫 王春芳 罗艳红. 烯醇化酶-α和C-MYC启动子结合蛋白-1基于PI3K/Akt通路调控肝细胞癌发生发展的研究进展[J]. 中国医药导报, 2022, 19(19): 53-56.
XU Weixin WANG Chunfang LUO Yanhong. Research progress of enolase -α and C-MYC promoter binding protein-1 regulating the occurrence and progression of hepatocellular carcinoma based on PI3K/Akt pathway. 中国医药导报, 2022, 19(19): 53-56.
链接本文:
https://www.yiyaodaobao.com.cn/CN/ 或 https://www.yiyaodaobao.com.cn/CN/Y2022/V19/I19/53
[1] Ji H,Wang J,Guo J,et al. Progress in the biological function of alpha-enolase [J]. Anim Nutr,2016,2(1):12-17.
[2] Subramanian A,Miller DM. Structural analysis of α-enolase:mapping the functional domains involved in down-regulation of the c-myc protooncogene [J]. J Biol Chem,2000,275(8):5958-5965.
[3] Trojanowicz B,Hoang-Vu C,Sekulla C. ENO1(Enolase 1,(alpha))[J]. Atlas Genet Cytogenet Oncol Haematol,2010,14(7):635-640.
[4] Osthus RC,Shim H,Kim S,et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc [J]. J Biol Chem,2000,275(29):21797-21800.
[5] Shi M,Dai WQ,Jia RR,et al. APCCDC20-mediated degradation of PHD3 stabilizes HIF-1a and promotes tumorigenesis in hepatocellular carcinoma [J]. Cancer Lett,2021, 496:144-155.
[6] Zhu X,Yu H,Li B,et al. Targetting an LncRNA P5848-ENO1 axis inhibits tumor growth in hepatocellular carcinoma [J]. Biosci Rep,2019,39(11):1-8.
[7] Li L,Wang F,Zhang J,et al. Typical phthalic acid esters induce apoptosis by regulating the PI3K/Akt/Bcl-2 signaling pathway in rat insulinoma cells [J]. Ecotoxicol Environ Saf,2021,208:111461.
[8] D?觟rng P,Calvis DF,Dombrowski F. Nuclear ErbB2 expression in hepatocytes in liver disease [J]. Virchows Arch,2021,478(2):309-318.
[9] Qiao G,Wu A,Chen X,et al. Enolase 1,a Moonlighting Protein,as a Potential Target for Cancer Treatment [J]. Int J Biol Sci,2021,17(14):3981.
[10] Yang X,Sun J,Sun H,et al. MicroRNA-30a-3p acts as a tumor suppressor in MHCC-97H hepatocellular carcinoma cells by targeting COX-2 [J]. J Cancer,2021,12(13):3945.
[11] Cheng R,Wang B,Cai X,et al. CD276 promotes vasculogenic mimicry formation in hepatocellular carcinoma via the PI3K/AKT/MMPs pathway [J]. Onco Targets Ther,2020,13:11485.
[12] Wang J,Han Y,Wang M,et al. Natural triterpenoid saponin Momordin Ic suppresses HepG2 cell invasion via COX-2 inhibition and PPARγ activation [J]. Toxicol In Vitro,2020,65:104784.
[13] Guo C,Gao C,Lv X,et al. CRKL promotes hepatocarcinoma through enhancing glucose metabolism of cancer cells via activating PI3K/Akt [J]. J Cell Mol Med,2021, 25(5):2714-2724.
[14] Teng C,Hsieh W,Wu H,et al. Hepatitis B virus pre-S2 mutant induces aerobic glycolysis through mammalian target of rapamycin signal cascade [J]. PLoS One,2015, 10(4):e122373.
[15] Mirabilii S,Ricciardi MR,Tafuri A. mTOR Regulation of Metabolism in Hematologic Malignancies [J]. Cells,2020, 9(2):404.
[16] Sun L,Lu T,Tian K,et al. Alpha-enolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway [J]. Eur J Pharmacol,2019, 845:8-15.
[17] Dimri M,Humphries A,Laknaur A,et al. Nqo1 ablation inhibits activation of the PI3K/Akt and MAPK/ERK pathways and blocks metabolic adaptation in hepatocellular carcinoma [J]. Hepatology,2020,71(2):549.
[18] Ni F,Huang X,Chen Z,et al. Shikonin exerts antitumor activity in Burkitt’s lymphoma by inhibiting C-MYC and PI3K/AKT/mTOR pathway and acts synergistically with doxorubicin [J]. Sci Rep,2018,8(1):1-10.
[19] Ahn H,Im E,Lee D Y,et al. Antitumor effect of pyrogallol via miR-134 mediated S phase arrest and inhibition of PI3K/AKT/Skp2/cMyc signaling in hepatocellular carcinoma [J]. Int J Mol Sci,2019,20(16):3985.
[20] Zhang M,Liu S,Chua M,et al. SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway [J]. Cell Death Dis,2019,10(8):1-15.
[21] Zheng H,Yang Y,Hong YG,et al. Tropomodulin 3 modulates EGFR-PI3K-AKT signaling to drive hepatocellular carcinoma metastasis [J]. Mol Carcinog,2019,58(10):1897-1907.
[22] Tan W,Zhu S,Cao J,et al. Inhibition of MMP-2 expression enhances the antitumor effect of sorafenib in hepatocellular carcinoma by suppressing the PI3K/AKT/mTOR pathway [J]. Oncol Res,2017,25(9):1543-1553.
[23] Ren F,Wu K,Yang Y,et al. Dandelion Polysaccharide Exerts Anti-Angiogenesis Effect on Hepatocellular Carcinoma by Regulating VEGF/HIF-1α Expression [J]. Front Pharmacol,2020,11:460.
[24] Wang L,Liu W,Huang X. MicroRNA-199a-3p inhibits angiogenesis by targeting the VEGF/PI3K/AKT signalling pathway in an in vitro model of diabetic retinopathy [J]. Exp Mol Pathol,2020,116:104488.
[25] Feng J,Li J,Wu L,et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma [J]. J Exp Clin Cancer Res,2020,39(1):1-19.
[26] Panasyuk G,Espeillac C,Chvin C,et al. PPARγ contributes to PKM2 and HK2 expression in fatty liver [J]. Nat Commun,2012,3(1):1-9.
[27] Chen J,Chen J,Huang J,et al. HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway [J]. Aging(Albany NY),2019,11(23):10839.
[28] Maranto C,Perconti G,Contino F,et al. Cellular stress induces cap-independent alpha-enolase/MBP-1 translation [J]. FEBS Lett,2015,589(16):2110-2116.
[29] Czogalla B,Partenheimer A,Badmann S,et al. Nuclear Enolase-1/MBP-1 expression and its association with the Wnt signaling in epithelial ovarian cancer [J]. Transl Oncol,2021,14(1):100910.
[30] Varone E,Decio A,Chernorudskiy A,et al. The ER stress response mediator ERO1 triggers cancer metastasis by favoring the angiogenic switch in hypoxic conditions [J]. Oncogene,2021,40(9):1721-1736.
[31] Novais EJ,Choi H,Madhu V,et al. Hypoxia and Hypoxia-Inducible Factor-1α Regulate Endoplasmic Reticulum Stress in Nucleus Pulposus Cells:Implications of Endoplasmic Reticulum Stress for Extracellular Matrix Secretion [J]. Am J Pathol,2021,191(3):487-502.
[32] Liu Y,Liao L,An C,et al. α-Enolase lies downstream of mTOR/HIF1α and promotes thyroid carcinoma progression by regulating CST1 [J]. Front Cell Dev Biol,2021, 9:670019.
[1]
魏明芳 申明 任宏飞 张铭光. 肝细胞癌患者反刍性沉思的影响因素 [J]. 中国医药导报, 2022, 19(2): 108-111.
[2]
张小余 徐细明. 记忆CD8+ T细胞相关免疫治疗在肝细胞癌中的研究进展 [J]. 中国医药导报, 2022, 19(19): 45-48,69.
[3]
王克净1 黄祖鸿2 石清兰3 柏文婕2 李泉1 肖维1. 肝细胞癌精准肝切除的研究进展 [J]. 中国医药导报, 2021, 18(23): 43-46.
[4]
罗皓1 周静2 黄君1. 术前ALBI分级对肝细胞癌患者术后预后的预测价值的meta分析 [J]. 中国医药导报, 2020, 17(29): 89-93.
[5]
庞丽君1 刘道洁2 林明华1 刘凯1 刘晓霓1 陈德喜1. 血管内皮生长因子原核表达载体的构建及表达 [J]. 中国医药导报, 2020, 17(23): 4-7.
[6]
杨益波 余保平. 循环miRNA在肝细胞癌治疗及预后评估中的研究进展 [J]. 中国医药导报, 2020, 17(16): 45-48.
[7]
王蔚1 周忠光2▲ 杨婧1 刘旭3 田明3 乔羽4 仲丽丽5. 桦褐孔菌醇提物抑制胃癌发生发展的作用及分子机制研究 [J]. 中国医药导报, 2020, 17(14): 8-13.
[8]
贺昱霖1 孟忠吉1,2,3. 肝细胞癌的免疫细胞治疗研究进展 [J]. 中国医药导报, 2019, 16(35): 36-39.
[9]
黄玉亮 吴君荣 赵惠柳 刘志民 梁艺华 黄昭东 朱波▲. AFP基因多态性与肝细胞癌易感性的相关性研究 [J]. 中国医药导报, 2019, 16(28): 25-29.
[10]
柳云1 刘道洁2 乔录新1 陈德喜1▲. 线粒体DNA D-LOOP区点突变和长期慢性肝炎、肝癌的相关性分析 [J]. 中国医药导报, 2019, 16(26): 121-124.
[11]
张景豪1 郑超1 周振华2 朱晓骏1 张鑫2 孙学华1,2 高月求1,2. 免疫细胞与肝细胞癌关系的研究进展 [J]. 中国医药导报, 2018, 15(36): 24-27.
[12]
陈彩霞 苏秀兰. miRNAs在肝细胞癌中的功能及应用前景 [J]. 中国医药导报, 2018, 15(34): 37-40,48.
[13]
林彤 沙永强 陈泽雄. 中药活性成分诱导肝细胞癌自噬的体外实验研究进展 [J]. 中国医药导报, 2018, 15(34): 49-52,56.
[14]
董丽伟 王飞 罗是是 赵应满 陈峰 李建军. 3.0T磁共振钆塞酸二钠增强扫描对肝硬化患者肝脏再生结节良恶性质的鉴别诊断价值 [J]. 中国医药导报, 2018, 15(31): 127-130.
[15]
毕成1 徐瑞成2 邹爽2 王聪聪2 张妍2 徐忠伟2. 华蟾毒配基抑制组蛋白乙酰化诱导肝癌细胞死亡的机制 [J]. 中国医药导报, 2018, 15(23): 4-8.