气体信号分子在非酒精性脂肪性肝病中的作用机制研究进展
孔光耀 蒋锋 刘丽萍 陈颖卿
大连大学慢性病研究中心大连市重点实验室,辽宁大连 116622
Research progress on the mechanism of gasotransmitters in non-alcoholic fatty liver disease
KONG Guangyao JIANG Feng LIU Liping CHEN Yingqing
Dalian Key Laboratory of Chronic Disease Research Center Dalian University, Liaoning Province, Dalian 116622, China
摘要 非酒精性脂肪性肝病(NAFLD)指除酒精因素,在肝细胞内脂肪异常沉积的一种代谢性肝损伤。气体信号分子一氧化氮、一氧化碳和硫化氢可通过调控VEGF-eNOS,PERK-eIF2-ATF4,Nrf2/HO-1,SESN2/AMPK/mTOR等信号轴改善NAFLD。本文主要将气体信号分子对NAFLD的调控作用及其分子机制进行综述,为今后利用气体信号分子及其供体治疗NAFLD提供新思路。
关键词 :
气体信号分子 ,
一氧化氮 ,
一氧化碳 ,
硫化氢 ,
非酒精性脂肪性肝病
Abstract :Non-alcoholic fatty liver disease (NAFLD) is a metabolic liver injury caused by abnormal deposition of fat in hepatocytes in addition to alcohol. Gasotransmitters, including nitric monoxide, carbon monoxide, and hydrogen sulfide can improve NAFLD by regulating VEGF-eNOS, PERK-eIF2-ATF4, Nrf2/HO-1,SESN2/AMPK/mTOR, and other signaling axes. This article mainly reviews the regulatory effects and molecular mechanisms of gasotransmitters on NAFLD, so as to provide new ideas for the treatment of NAFLD by gas signaling molecules and their donors in the future.
Key words :
Gasotransmitters
Nitrogen monoxide
Carbon monoxide
Hydrogen sulfid
Non-alcoholic fatty liver disease
基金资助: 国家自然科学基金面上项目(82000074);
辽宁省教育厅科学研究经费项目(jyt-dldxjc202005);
辽宁省大连市青年科技之星基金项目(2020RQ080)。
通讯作者:
陈颖卿(1986.12-),男,博士,副教授,硕士生导师,主要从事纤维化疾病机制及其药物筛选研究。
刘丽萍(1974.2-),女,博士,副教授,硕士生导师,主要从事心血管疾病靶向治疗及药物筛选研究。
作者简介 : 孔光耀(1996.9-),男,大连大学医学院2019级临床检验诊断学在读硕士研究生,主要从事气体信号分子对纤维化疾病的作用及机制研究。
[1] Neuschwander-Tetri BA. Non-alcoholic fatty liver disease [J]. BMC Med,2017,15(1):45.
[2] 迟骁玮.非酒精性脂肪肝病的发病机制和药物研发进展[J].中国药师,2021,24(7):338-343.
[3] 程雅欣,李佳.非酒精性脂肪肝与常见内分泌代谢性疾病关系及临床治疗综述[J].解放军医学院学报,2021,42(9):963-969.
[4] 刘思伽,陈潇凡,胡必成,等.非酒精性脂肪肝病的发病机制及治疗研究进展[J].湖北中医药大学学报,2019,21(2):126-129.
[5] 李冬娟,钟继昌,谢少康,等.非酒精性脂肪肝病的发病机制及药物治疗研究进展[J].名医,2020(10):71-72.
[6] Li S,Liao R,Sheng X,et al. Hydrogen Gas in Cancer Treatment [J]. Front Oncol,2019,9:696.
[7] Wu DD,Wang DY,Li HM,et al. Hydrogen Sulfide as a Novel Regulatory Factor in Liver Health and Disease [J]. Oxid Med Cell Longev,2019,2019:3831713.
[8] Kim HJ,Joe Y,Kim SK,et al. Carbon monoxide protects against hepatic steatosis in mice by inducing sestrin-2 via the PERK-eIF2α-ATF4 pathway [J]. Free Radic Biol Med,2017,110:81-91.
[9] Maria ATJ,Rozier P,Fonteneau G,et al. iNOS Activity Is Required for the Therapeutic Effect of Mesenchymal Stem Cells in Experimental Systemic Sclerosis [J]. Front Immunol,2018,9:3056.
[10] Chen Y,Yuan S,Cao Y,et al. Gasotransmitters:Potential Therapeutic Molecules of Fibrotic Diseases [J]. Oxid Med Cell Longev,2021,2021:3206982
[11] Bravo M,Raurell I,Barberá A,et al. Synergic effect of atorvastatin and ambrisentan on sinusoidal and hemodynamic alterations in a rat model of NASH [J]. Dis Model Mech,2021,14(5):dmm048884.
[12] Lu J,Zhao YL,Zhang XQ,et al. The vascular endothelial growth factor signaling pathway regulates liver sinusoidal endothelial cells during liver regeneration after partial hepatectomy [J]. Expert Rev Gastroenterol Hepatol,2021,15(2):139-147.
[13] Yang T,Zelikin AN,Chandrawati R. Progress and Promise of Nitric Oxide-Releasing Platforms [J]. Adv Sci(Weinh),2018,5(6):1701043.
[14] Hammoutene A,Rautou PE. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease [J]. J Hepatol,2019,70(6):1278-1291.
[15] Sheldon RD,Meers GM,Morris EM,et al. eNOS deletion impairs mitochondrial quality control and exacerbates Western diet-induced NASH [J]. Am J Physiol Endocrinol Metab,2019,317(4):E605-E616.
[16] Ahsan F,Oliveri F,Goud HK,et al. Pleiotropic Effects of Statins in the Light of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis [J]. Cureus,2020,12(9):e10446.
[17] Becerril S,Rodríguez A,Catalán V,et al. iNOS Gene Ablation Prevents Liver Fibrosis in Leptin-Deficient ob/ob Mice [J]. Genes(Basel),2019,10(3):184-200.
[18] Zhang Y,Higgins CB,Fortune HM,et al. Hepatic arginase 2 (Arg2) is sufficient to convey the therapeutic metabolic effects of fasting [J]. Nat Commun,2019,10(1):1587.
[19] Asosingh K,Lauruschkat CD,Alemagno M,et al. Arginine metabolic control of airway inflammation [J]. JCI Insight,2020,5(2):e127801.
[20] Almeida AS,Soares NL,Sequeira CO,et al. Improvement of neuronal differentiation by carbon monoxide:Role of pentose phosphate pathway [J]. Redox Biol,2018,17:338-347.
[21] Chen Y,Park HJ,Park J,et al. Carbon monoxide ameliorates acetaminophen-induced liver injury by increasing hepatic HO-1 and Parkin expression [J]. Faseb J,2019,33(12):13905-13919.
[22] Upadhyay KK,Jadeja RN,Vyas HS,et al. Carbon monoxide releasing molecule-A1 improves nonalcoholic steatohepatitis via Nrf2 activation mediated improvement in oxidative stress and mitochondrial function [J]. Redox Biol,2020,28:101314.
[23] Hashimoto T,Sugihara T,Kanda T,et al. 5-Aminolevulinic Acid Attenuates Glucose-Regulated Protein 78 Expression and Hepatocyte Lipoapoptosis via Heme Oxygenase-1 Induction [J]. Int J Mol Sci,2021,22(21):11405-11414.
[24] Joe Y,Kim S,Kim H J,et al. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway [J]. Faseb J,2018,32(5):2630-2643.
[25] Lu W,Li X,Luo Y. FGF21 in obesity and cancer:New insights [J]. Cancer Lett,2021,499:5-13.
[26] Tillman EJ,Rolph T. FGF21:An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases [J]. Front Endocrinol(Lausanne),2020, 11:601290.
[27] 李祖寅,周志杰,晏滨,等.内质网应激在非酒精性脂肪肝病中的作用[J].中华肥胖与代谢病电子杂志,2020,6(2):122-126.
[28] Sun HJ,Wu ZY,Nie XW,et al. Implications of hydrogen sulfide in liver pathophysiology:Mechanistic insights and therapeutic potential [J]. J Adv Res,2021,27:127-135.
[29] Yu Y,Ye SM,Liu DY,et al. AP39 ameliorates high fat diet-induced liver injury in young rats via alleviation of oxidative stress and mitochondrial impairment [J]. Exp Anim,2021,70(4):553-562.
[30] Wu D,Zhong P,Wang Y,et al. Hydrogen Sulfide Attenuates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease by Inhibiting Apoptosis and Promoting Autophagy via Reactive Oxygen Species/Phosphatidylinositol 3-Kinase/AKT/Mammalian Target of Rapamycin Signaling Pathway [J]. Front Pharmacol,2020,11:585860.
[31] Kim JH,Sim HA,Jung DY,et al. Poria cocus Wolf Extract Ameliorates Hepatic Steatosis through Regulation of Lipid Metabolism,Inhibition of ER Stress,and Activation of Autophagy via AMPK Activation [J]. Int J Mol Sci,2019,20(19):4801-4817.
[1]
陈宜静 杨静 曹志伟. 鼻呼出气一氧化氮检测对慢性鼻窦炎临床意义的研究进展 [J]. 中国医药导报, 2022, 19(9): 46-49,54.
[2]
王缘 徐浩刚▲. 涤痰化瘀汤对风痰入络证脑梗死急性期患者血清NO、ET水平的影响 [J]. 中国医药导报, 2022, 19(6): 127-130.
[3]
汪莉萍1 黄敏2 杜丽娟1 王梅3▲. 认知功能在急性一氧化碳中毒后患者焦虑与日常生活能力中的中介效应 [J]. 中国医药导报, 2022, 19(4): 194-197.
[4]
李傲寒 白羽 王茜茜 陈颖卿. 气体信号分子对特发性肺纤维化的作用机制研究进展 [J]. 中国医药导报, 2022, 19(28): 41-45.
[5]
马海林 权莉 蒋升. 非酒精性脂肪性肝病合并2型糖尿病患者的临床特征及危险因素分析 [J]. 中国医药导报, 2022, 19(21): 70-73,82.
[6]
施晓军 谭祥 章晓思 张贤翠 李军祥. 基于国家中药复方专利探讨非酒精性脂肪性肝病的用药规律 [J]. 中国医药导报, 2022, 19(20): 148-151,156.
[7]
田继云 杜晟楠 高静静 袁乙富 曹勤▲ 蒋元烨▲. 基于UPLC-Q-Orbitrap/MS技术对非酒精性脂肪性肝病患者的血清脂质组学研究 [J]. 中国医药导报, 2022, 19(19): 5-11.
[8]
谭丽萍1 陈文慧2 石安华3 武俊紫1 朱晓松1 张珊1. 雷帕霉素对非酒精性脂肪性肝病大鼠的影响 [J]. 中国医药导报, 2022, 19(19): 12-15.
[9]
张明明1 张瑛琪1 陈莹1 张彬1 籍文强1 张岁2. 亚低温联合高压氧对一氧化碳中毒迟发性脑病患者认知功能的影响 [J]. 中国医药导报, 2022, 19(17): 80-83.
[10]
傅佳蓉 朱雨宸 虞洁 刘伟 陶弢. 多囊卵巢综合征患者甘油三酯葡萄糖乘积指数与非酒精性脂肪性肝病患病风险的关系 [J]. 中国医药导报, 2021, 18(28): 98-102.
[11]
聂钊源1 冯崇廉1 潘伟钰2 刘佳1 梁伟豪3 罗美婷1 李凌云1. 冯崇廉辨治非酒精性脂肪性肝病经验探讨 [J]. 中国医药导报, 2021, 18(22): 145-148.
[12]
杜惠玲 王燕. 基于行动研究法理论的健康管理在老年非酒精性脂肪性肝病中的应用效果 [J]. 中国医药导报, 2021, 18(19): 163-167.
[13]
周涛1 许杰2 戚璐1 徐俊1 程良斌1,3. 《内经》体质医学思想在非酒精性脂肪性肝病病因病机中的应用 [J]. 中国医药导报, 2021, 18(16): 121-124.
[14]
陈彬 陈芳▲. 呼出气一氧化氮对支气管哮喘的诊断价值与Astograph法支气管激发试验相关性研究 [J]. 中国医药导报, 2021, 18(14): 123-127.
[15]
穆艳顺 刘伟娟 高嘉陵 刘红伟 樊青曼. 亚低温联合脑苷肌肽治疗新生儿窒息脑损伤的临床效果及对血NO的影响 [J]. 中国医药导报, 2020, 17(9): 99-102.